
Active and Passive Third-Order Filters
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Simple and general design equations are given for active and passive third-
order filters. Also a variety of optimal prototype-designs are presented.

Introduction: Simple design equations for active and passive third-order
filters are given. We consider third order lowpass filters which have a
transfer function of the form

H(s) =
K

a3 s3 + a2 s2 + a1 s+ 1
.

The coefficients a1, a2, a3 are positive real numbers and K is a non-zero
real number. The transfer function H(s) is called allpole transfer function
because in the numerator we have a constant. For the active filters we
consider the designs given in [3] and [1] and for the passive filters the
classical singly and doubly terminated LC-ladder designs. We will express
the relevant parameter values as function of the values a3, a2, and a1 and
as function of the values b3, b2, and b1 defined from the magnitude√

H(ıω)H(−ıω) =
K√

1 + b3 ω6 + b2 ω4 + b1 ω2
.

Third-Order Active Allpole Lowpass Filters: An active circuit which
realises the above transfer function is displayed in figure 1. It consists of a
first order RC-lowpass followed by a second order Sallen-Key block. For

Fig. 1. Third Order Allpole Lowpass
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simplicity we use normalised values. Standard circuit analysis leads to

a3=R0R1R2C0C1C2

a2=R0R1C0C1(1−K)+R0R2C0C2+R0R1C0C2+R0R2C1C2+R1R2C1C2

a1 =R0C0 +R0C1(1−K) +R0C2 +R1C1(1−K) +R2C2 +R1C2

where K = RA+RB
RA

, i.e. in this circuit K is a real number greater or
equal to unity. In practice one usually prefers simple designs in which as
many components as possible have equal values. Therefore Huelsman’s
approach [3] was to set all capacitances to unity. It turned out that for
the simplest case K = 1, i.e. the case of a voltage follower, this does do
not lead to implementations for many practical cases. Huelsman therefore
used K = 2 which lead to realisable designs not only for Butterworth [3]
but also for other common filter characteristics [4],pp.286-287. Huelsman
found his solutions by numerical techniques. For C0 =C1 =C2 = 1 and
K = 2 we get (a3, a2, a1) = (R0R1R2, 2R0R2 +R1R2, R0 +R2) and a
straight-forward calculation then gives the value of R0 as real root of the
third degree polynomial R3
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0 + a2

2
R0 − a3

2
= 0 and the values of

R2 = a1 −R0 andR1 = a3
R0(a1−R0)

follow. Application of a well-known
formula for the solution of cubic equations then for a2 < 2

3
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For instance for a Butterworth filter we have (a3, a2, a1) = (1, 2, 2) which
leads to R0 = 2

3
cosh( 1

3
cosh−1( 23

4
)) + 2

3
≈ 1.5652 and the values R2 =

a1 −R0 ≈ 0.4348 andR1 = a3
R0R2

≈ 1.4694 follow in agreement with the
numerical data in [3].

As another example consider a Tschebyscheff filter with passband ripple
ε. Transfer function and poles (see e.g. [2], p.27 and p.9) are given by
H(s) = K

4ε(s−p1)(s−p2)(s−p3)
and p1/3 =− 1

2
sinh( 1

3
asinh( 1

ε
))±

ı
√
3

2
cosh( 1

3
asinh( 1

ε
)), p2 =− sinh( 1

3
sinh−1( 1

ε
)). This gives

(a3, a2, a1) = (4ε, 8εσ, ε(8σ2 + 3)), where σ= sinh( 1
3
asinh( 1

ε
)),

K = 2 and the equation for R0 can be used.
Often a desired magnitude function is given, i.e. we are given the triple
(b3, b2, b1). Setting s2 =−ω2 from magnitude and transferfunction we
get the factorisation (a3s3+a2s2+a1s+1) · (−a3s3+a2s2−a1s+1) =

−b3s6 + b2s4 − b1s2 + 1. Comparison of terms yields

a23 = b3, − 2a3 a1 + a22 = b2, a21 − 2a2 = b1 .

From these equations we find that a2 is root of the fourth degree equation

x4 − 2b2 · x2 − 8b3 · x+ (b22 − 4b1b3) = 0 . (1)

This means that we can change from (a3, a2, a1) to (b3, b2, b1) and
back (namely a3 =

√
b3, a2 is root of (1), and a1 =

√
b1 + 2a2). A

common approach in filter design which encompasses Butterworth and
Tschebyscheff filters is to set b3ω6 + b2ω4 + b1 ω2 = ε2 · (uω3 − vω)2.
With this approach we get b22 = 4b1b3 and the quartic for a2 reduces to a
cubic which can be solved as

a2 = 2

√
−2b2
3
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.

As a check, for the third Tschebyscheff polynomial 4w3 − 3ω we can
recover the value a2 = 8ε sinh( 1

3
asinh( 1

ε
)) given above.

It is now very simple to design various optimal filters.
To obtain a least mean square filter ([5], p.381) we set ε2 · (uω3 − v ω)2 =

ε2 · ( 7
4
ω3 − 3

4
ω)2, i.e. u= 7

4
and v= 3

4
. In table 1 below the values for the

resulting resistors are given for ε= 1 in the row LMS.
The normalised polynomials Pn(x) of degree n which minimise the
integral

∫1
−1
|Pn(x)|dx are the Tschebyscheff polynomials of the second

kind ([7], pp.70-71) which follow up to a multiplicative constant as the
derivative of the (usual) Tschebyscheff polynomials of the first kind. For
our case n= 3 we therefore set ε2 · (uω3 − v ω)2 = ε2 · (2ω3 − ω)2, i.e.
u= 2 and v= 1. In table 1 below the values of the resulting resistors are
given for ε= 1 in the row Tschebyscheff II.
A further sensible selection are Legendre polynomials. These polynomials
minimise the average distance to zero (see [7], p.71). For degree n= 3
this leads to ε2 · (uω3 − v ω)2 = ε2 · ( 5

2
ω3 − 3

2
ω)2, i.e. u= 5

2
and v= 3

2
.

Again in table 1 the values of the resulting resistors are given for ε= 1. We
call these filters class-LII filters to distinguish them from the class-L filters
considered next.
In [6] the class-L filters were introduced which are also related to Legendre
polynomials. Their amplitude response is monotonic and has the sharpest
cut-off rate which an allpole filter can have. For degree n= 3 we get
b3ω6+b2ω4+b1ω2 = ε2(3ω6−3ω4+ω2). For generality the ripple ε is
used, Papoulis considered ε= 1. This time the quartic for a2 does not
reduce to a cubic but by applying the solution formulas for quartics one
sees that the associated cubic resolvent has a particularly simple form, i.e.
the distinctive feature of the class-L filters finds its algebraic counterpart
in a particular resolvent (z + ε2)3 = ε4(ε2 + 9) from which a2 follows.
For ε= 1 we obtain

a2 =

√
10

1
3 − 1 +

√
2 ·

√√
10

2
3 + 10

1
3 + 1− 10

1
3

2
− 1 = 2.270204 . . .

and the resistor values (displayed in table 1) follow.
The condition a2 < 2

3
a21 yields a2 >−2b1. Since by Hurwitz’s criterion

a2 must be a positive number this condition is fulfilled for b1 ≥ 0, i.e. for
all designs of the form ε2(uω3 − vω)2. The entries in table 1 are ordered
according to their slope d

dω
(b3ω6+b2ω4+b1ω2)|ω=1 = 6b3+4b2+2b1.

Table 1: Lowpass designs, equal capacitor case, ε= 1, K = 2
R0 R1 R2 slope

Butterworth 1.5652 1.4694 0.4348 6
Class-L 2.003 2.465 0.3508 8

LMS 1.9122 2.5054 0.3653 9
Tschebyscheff II 2.0540 2.8874 0.3372 10

Class-LII 2.3724 3.6992 0.2849 12
Tschebyscheff 3.5334 6.3886 0.1772 18

Geffe [1] treated the case R0 =R1 =R2 = 1 with K = 1 and gave a
cubic for C2. We use the cubic C3

0 − a1C2
0 + 3

2
a2C0 − 3a3 = 0 which
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can be derived and solved as the cubic for R0. For a2 > 2
9
a21 we find
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and C1 = 3a3/(C0(a1 − C0)) as well as C2 = (a1 − C0)/3 follow. In
table 2 the same designs as in table 1 are given with exception of the
Tschebyscheff case for ε= 1 which is not realisable. This follows from
the condition a2 > 2

9
a21⇒ a2 >

2
5
b1 which is violated for ε= 1.

Table 2: Lowpass designs, equal resistor case, ε= 1, K = 1
C0 C1 C2

Butterworth 1.3926 3.5468 0.20245
Class-L 1.9660 6.8158 0.12925

LMS 1.9041 7.3841 0.1245
Tschebyscheff II 2.0779 9.2160 0.1044

Class-LII 2.4387 14.076 0.072827

Third Order Passive Allpole Lowpass Filters: Using the transfer function
and our knowledge of the values a3, a2, a1, it is a straight-forward
procedure to determine passive LC-realisations for the filters considered
above. The simplest cases are the two singly terminated lossless ladder
networks depicted in figure 2. For the singly terminated cases we find

Fig. 2. Singly Terminated Third Order Lowpass Filters
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(L1, C2, L3) = (a3
a2
, a2
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a3
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, a1− a3
a2

) = (C1, L2, C3), where K = 1.

For the same indexing the doubly (unity) terminated cases yield L3 =
2a3
a2−η

, C2 = a1 −
√
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2
.

For the second form we replace L3→C3, C2→L2, and L1→C1.

Conclusion: Very simple design equations for third order prototype filters
have been given. Setting v= u−1 allows the design of filters having
ripple ε and slope ε2(4u+2) for 1≤u≤4. Also various optimal filter
characteristics have been considered which can be extended for any degree
n. From the lowpass prototypes highpass, bandpass and bandstop designs
follow using standard techniques. For Butterworth and Tschebyscheff
filters, which are special cases of Cauers filters, the pole locations are
circles and ellipses. Recently [2] the pole locations of Cauer filters have
been shown to be related in a simple way to Cartesian ovals. We are
confident that for the remaining optimal designs considered here for n= 3,
simple curves of the pole locations can be determined for any order.

K. Huber (Huber Consult, Berlin, Germany)

E-mail: filterdesign@klaus-huber.net
c©Klaus Huber 2013

References

1 Geffe, P.R.: ‘How to build high-quality filters out of low-quality parts’,
Electronics, November 11, 1976, pp.111-113

2 Huber, K.: ‘Cauer Filters’, BOD, Norderstedt, 2011
3 Huelsman, L.P.: ‘An Equal-Valued-Capacitor Active RC Network

Realization of a Third-Order Low-Pass Butterworth Characteristic’,
Electronic Letters, 7, no.19, May 20, 1971, pp.271-272

4 Huelsman, L.P.: ‘Active and Passive Analog Filter Design’, McGraw-Hill,
1993

5 Humpherys, DeVerl S.: ‘The Analysis, Design, and Synthesis of Electrical
Filters’, Prentice-Hall, 1970

6 Papoulis, A.: ‘Optimum Filters with Monotonic Response’, Proceedings of
the IRE, March 1958, pp. 606-609

7 Timan, A.F.: ‘Theory of Approximation of Functions of a Real Variable’,
Dover, New York 1994

2


